Featured Video

domingo, 24 de marzo de 2013

Un diminuto laboratorio portátil bajo la piel

Un diminuto laboratorio portátil bajo la piel 
Su pequeño tamaño (mide 20 milímetros de longitud y cuatro de altura) permitirá llevarlo en el cuerpo durante largos periodos de tiempo. Se trata del prototipo de un diminuto implante electrónico capaz de analizar moléculas presentes en el organismo y enviar los resultados al ordenador de un médico o a cualquier dispositivo móvil en unos pocos minutos.

Sandro Carrara y Giovanni de Micheli, los científicos de la Escuela Politécnica Federal de Lausana (EPFL), en Suiza, que lo han desarrollado, señalan ya algunas aplicaciones para su implante. Por ejemplo, hacer un seguimiento permanente a los pacientes que reciben tratamientos de quimioterapia, a diabéticos y a otros enfermos crónicos, de forma que se pueda reducir la frecuencia con la que deben someterse a los análisis de sangre tradicionales y ajustar mejor sus dosis de medicación.

El prototipo de este diminuto laboratorio portátil, que todavía está en fase experimental y de momento sólo ha sido probado en ratones, será presentado este miércoles en la Conferencia Europea de Diseño, Automatización y Pruebas (DATE 13) que hasta el 22 de marzo se celebra en Grenoble (Francia).

"El sistema consta de dos partes. Un dispositivo sin batería que se coloca bajo la piel y que tiene un tamaño que permite insertarlo con una cánula. Por otro lado, consta de un parche electrónico que se coloca sobre la piel, justo encima del implante. El dispositivo interno recoge información sobre diversas moléculas que se encuentran en el tejido conectivo [que sostiene y cohesiona a otros tejidos y órganos] y la transmite al parche electrónico, que a su vez le suministra energía [por inducción electromagnética]. El parche externo envía la información recabada por el implante interno a un teléfono inteligente o tableta a través de un transmisor de radio", resume Sandro Carrara a ELMUNDO.es.

"Las baterías están sólo en el parche, por lo que pueden sustituirse sin necesidad de retirar el implante", añade. Carrara afirma que el sistema se ha concebido para ser colocado en el abdomen, aunque también puede llevarse en un brazo o en una pierna.

Según sostiene, el análisis molecular del tejido conectivo tiene una correlación muy alta con la cantidad de las mismas moléculas que hay en la sangre, lo que en la práctica permite analizar la concentración de un gran número de sustancias presentes en nuestro organismo. De momento el sistema ha sido diseñado para detectar hasta cinco sustancias de manera simultánea. Para capturar cada una de ellas (lactosa o glucosa, por ejemplo) sus cinco sensores están cubiertos con una enzima.

Teresa Guerrero | ELMUNDO.es

viernes, 22 de marzo de 2013

Un robot corre por la arena como las lagartijas del desierto

Un robot corre por la arena como las lagartijas del desierto 
Investigadores del Instituto de Tecnología de Georgia (EEUU) se han fijado en cómo las lagartijas surcan las arenas del desierto para crear un pequeño robot que haga lo mismo en superficies granulares. La máquina puede inspirar a los ingenieros para perfeccionar los vehículos de exploración planetaria.

Las veloces carreras de las lagartijas del desierto han inspirado a los científicos para crear un robot de su tamaño, según un estudio que presenta esta semana la revista Science.

Tras trabajar con alas de aeronaves en el aire y con robots submarinos en el agua, un equipo del Instituto de Tecnología de Georgia (EE UU) se ha fijado en cómo introducen sus extremidades esos reptiles en la arena para analizar el movimiento de objetos en superficies granulares, como la arena o grava.

Los resultados han servido a los investigadores para diseñar un aparato robótico de seis patas que se mueve de forma rápida y eficaz por una cama de granos sueltos.

Los investigadores han comprobado que las interacciones en un terreno como este –aunque también podría ser arena, lodo o pasto–, llegan a ser más complejas que los movimientos a través de los fluidos.

Para solucionarlo, se han efectuado simulaciones computarizadas para identificar las formas de las piernas y las frecuencias de los pasos o zancadas óptimas que permiten atravesar un terreno tan deformable.

Patas en forma de C

Teniendo en cuenta las fuerzas de elevación y arrastre que afectan a cada una de las piernas robóticas, según entran y salen de las superficies granulares, los investigadores han optado por un diseño de extremidad en forma de C, ya que parece optimizar los pasos.

Este diseño todavía no es tan eficiente como el de las lagartijas y otros animales, pero podría ayudar a mejorar el rendimiento de los robots que se mueven por superficies, como los rovers que se preparan para la exploración planetaria: los futuros ‘curiosities’.

La investigación supone un avance, según sus promotores, en el campo del terradinamycs, el término con el que han bautizado a la ciencia que estudia los animales y vehículos con extremidades para desplazarse en superficies complejas como las granulares.

"Ahora tenemos las herramientas para entender el movimiento de vehículos con patas sobre la arena suelta de la misma forma que los científicos y los ingenieros han tenido herramientas para entender la aerodinámica y la hidrodinámica", comenta Daniel Goldman, uno de los autores.

SINC

jueves, 21 de marzo de 2013

Una nueva tecnología permitirá ver películas 3D en móviles y tabletas sin utilizar gafas

Una nueva tecnología permitirá ver películas 3D en móviles y tabletas sin utilizar gafas 
Investigadores de Hewlett-Packard han desarrollado un sistema para observar imágenes y vídeos en tres dimensiones sin la necesidad de utilizar gafas. Está especialmente adaptado para las pantallas de móviles, tabletas y otros dispositivos portátiles.

Ahora que el público ya está familiarizado con las aparatosas gafas para ver películas en tres dimensiones, su final puede estar cerca. Físicos de los laboratorios de Hewlet Packard en Palo Alto (EE UU) han desarrollado una nueva tecnología para observar imágenes en 3D sin ponerse gafas y que funciona desde cualquier ángulo de observación.

Aunque otras pantallas como la de la Nintendo 3DS ya eran capaces de hacer lo mismo, con ellas el espectador tiene que estar localizado en un punto exacto donde la imagen se ve en 3D. Si se mueve a derecha o izquierda, hacia delante o hacia atrás, la imagen en 3D desaparece.

“Con nuestro dispositivo se puede ver la imagen en 3D desde cualquier ángulo frente a la pantalla” afirma David Fatta, uno de los autores del artículo de Nature en el que se presenta esta nueva tecnología. “Puedes moverte alrededor de la pantalla y ver la imagen desde distintas perspectivas sin cambios bruscos, de una manera continua. Como si te estuvieras moviendo alrededor del objeto y no de una imagen del objeto”.

Según asegura el propio Fatta, si observáramos una imagen del globo terráqueo en 3D con el polo norte hacia la parte superior de la pantalla, al movernos alrededor de la pantalla seríamos capaces de observar todos los países del mundo.

Otra de las grandes novedades es que la tecnología está especialmente adaptada a dispositivos portátiles, como móviles o tabletas. La dificultad añadida en estos aparatos es que la pantalla es más pequeña y se ve desde más cerca, por lo que necesita píxeles de menor tamaño para obtener una imagen de calidad.

“Aún no sabemos si este sistema funcionará mejor o peor que los ya existentes en pantalla grande –asegura Fatta a SINC– pero nuestra tecnología es energéticamente más eficiente y de bajo coste. Además, creemos que el hecho de que nuestro sistema utiliza una pantalla transparente es un punto a su favor”.

Más allá del ocio

Raymond Beausoleil, investigador principal del grupo, cree que las aplicaciones que se pueden desarrollar en un futuro a partir de esta tecnología van más allá de los fines lúdicos. “Creemos que puede llegar a tener importancia para visualización de datos complejos, por ejemplo para modelización molecular en la industria farmacéutica. También para cartografía o imágenes médicas” afirma Beausoleil.

Pero antes de que esto llegue, hay varios retos que superar que pueden llevar aún un tiempo considerable y retrasar su comercialización. El principal es conseguir una calidad de la imagen aceptable, pero también ha de ser un dispositivo robusto y resistente. Además el efecto 3D se observa hasta un metro de distancia, lo cual no presenta un problema si se aplica la tecnología a los smartphones, pero sí para pantallas mayores.

SINC

martes, 12 de marzo de 2013

Una sonda microscópica libera fármacos en el cerebro

Una sonda microscópica libera fármacos en el cerebro 
Un equipo multidisciplinar de investigadores del Consejo Superior de Investigaciones Científicas (CSIC), el Centro de Investigaciones Tecnológicas Ikerlan y el Instituto de Investigación en Ingeniería de Aragón de la Universidad de Zaragoza, ha desarrollado una sonda microscópica capaz de registrar la actividad neuronal y aplicar al mismo tiempo fármacos en el cerebro. El nuevo dispositivo, flexible y biocompatible, está fabricado sobre un polímero, lo que permite interactuar a escalas microscópicas nunca antes alcanzadas.

El desarrollo, descrito en un artículo publicado en la revista Lab on a Chip, supone un avance en la intervención farmacológica, genética o eléctrica para estudiar la actividad neuronal, ya que mejora los circuitos y dispositivos en miniatura fabricados sobre sustratos de silicio, más rígidos y con efectos secundarios. El dispositivo ha sido probado experimentalmente in vivo en ratas.

“En muchos casos, la detección de la epilepsia, el Parkinson y el Alzheimer sólo puede realizarse a través de electrodos implantados de forma semicrónica en el cerebro de los pacientes. Las tecnologías empleadas para ello deben ser, por ello, lo menos invasivas posible y garantizar una respuesta biocompatible, así como la integridad de los circuitos neuronales adyacentes al implante”, explica la investigadora del CSIC en el Instituto Cajal Liset Menéndez de la Prida, coordinadora científica del proyecto.

El nuevo dispositivo está fabricado sobre el polímero SU-8 y es capaz de integrar el registro microscópico de la actividad neuronal con canales fluídicos para la aplicación de los fármacos. “Su diseño contrasta con la rigidez de los implantes de silicio, que aún tienen efectos secundarios, lo que ha limitado la expansión definitiva de esta técnica para el desarrollo de interfaces cerebro-máquina”, asegura Rosa Villa, investigadora del CSIC en el Instituto de Microelectrónica de Barcelona.

Ane Altuna, investigadora en Ikerlan y responsable de la parte tecnológica, precisa: “Hemos conseguido aportar un novedoso enfoque en la fabricación y el diseño, lo que nos ha permitido integrar los electrodos al mismo nivel que la superficie del polímero. La integración posterior de los canales fluídicos se llevó a cabo mediante técnicas de litografía y el desarrollo de un sistema de encapsulado que garantiza el registro y la liberación simultánea de los fármacos”.

Los investigadores buscan ahora empresas interesadas en su patente con el objetivo de fabricar esta tecnología a gran escala. Para ello, han comenzado a diseñar un programa en fase beta para pruebas de usuario que permita testar los nuevos dispositivos con el objetivo de diseñar prototipos orientados a la aplicación biomédica.

CSIC